Archival Journal Publications |

[
2014,
2013,
2012,
2011,
2010,
2009,
2008,
2007,
2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990, 1989, 1988, 1987 ]2014Jesper Kristensen and N. Zabaras, "Bayesian Uncertainty Quantification with Cluster Expansions", Physical Review B,
Submitted. [128]
[127]
Peng Chen and N. Zabaras, "Variational Bayesian Inference with Infinite Mixture of
Gaussian Processes for Uncertainty Quantification",
Journal of Computational Physics,
submitted (For
ScienceDirect subscribers, a full
feature html copy). [126]
Jiang Wan and N. Zabaras, "Stochastic Input Model generation using Bayesian Network Learning",
Journal of Computational Physics,
accepted (For
ScienceDirect subscribers, a full
feature html copy). [125]
Ilias Bilionis and N. Zabaras, "Solution of Inverse Problems with Limited Forward
Solver Evaluations: A Bayesian Perpsective", Inverse Problems,
Institute of Physics,
Vol. 30, pp. 015004 (32pp), 2014. [124]
Peng Chen and N. Zabaras, "Uncertainty quantification for multiscale disk forging of polycrystal materials using probabilistic graphical model techniques",
Computational Materials Science, Volume 84, pp. 278--292, 2014 (For
ScienceDirect subscribers, a full
feature html copy). 2013Jesper Kristensen, Ilias Bilionis and N. Zabaras, "Relative Entropy as Model Selection Tool in Cluster Expansions", Physical Review B,
Vol. 87, pp. 174112, 2013. [123]
[122]
Jiang Wan and N. Zabaras, "A probabilistic graphical model approach to stochastic
multiscale partial differential equations",
Journal of Computational Physics,
Volume 250, pp 477--510, 2013 (For
ScienceDirect subscribers, a full
feature html copy). [121]
Ilias Bilionis and N. Zabaras, "A stochastic optimization approach to coarse-graining using a relative-entropy
framework", The Journal of Chemical Physics, Vol. 138, pp. 044313-1 -- 044313-12 (2013) (For
American Institute of Physics subscribers, a full
feature html copy). [120]
Peng Chen and N. Zabaras, "Uncertainty quantification for flow in porous media
using probabilistic graphical model techniques",
Journal of Computational Physics,
Vol. 250, pp. 616-643, 2013 (For
ScienceDirect subscribers, a full
feature html copy). [119]
Ilias Bilionis, N. Zabaras, A. Konomi and G. Lin "Multi-output separable Gaussian process:
Towards an efficient, fully Bayesian paradigm for uncertainty quantification",
Journal of Computational Physics,
Vol. 241, Pages 212-239, 2013 (For
ScienceDirect subscribers, a full
feature html copy). [118]
Peng Chen and N. Zabaras, "Adaptive Locally Weighted Projection Regression Method for
Uncertainty Quantification", Communications in Computational Physics (CiCP),
Vol. 14, pp. 851-878, 2013. 2012Ilias Bilionis and N. Zabaras, "Multidimensional adaptive
relevance vector machines for Uncertainty Quantification",
SIAM Journal for Scientific Computing,
Vol. 34, No. 6, pp. B881-B908, 2012 (For
SIAM Journal subscribers, a full
feature html copy). [117]
[116]
Ilias Bilionis and N. Zabaras, "Multi-output Local Gaussian Process Regression:
Applications to Uncertainty Quantification",
Journal of Computational Physics,
Vol. 231, pp. 5718-5746, 2012 (For
ScienceDirect subscribers, a full
feature html copy). [115]
Bin Wen and N. Zabaras, "Investigating Variability of Fatigue Indicator Parameters
of Two-phase Nickel-based Superalloy Microstructures",
Computational Materials Science, 51 (1), pp. 455-481, 2012 (For
ScienceDirect subscribers, a full
feature html copy). [114]
Bin Wen and N. Zabaras, "A Multiscale Approach for Model Reduction of Random
Microstructures",
Computational Materials Science, Vol. 63, pp. 269-285, 2012 (For
ScienceDirect subscribers, a full
feature html copy). 2011Xiang Ma and N. Zabaras, "Kernel Principal
Component Analysis for Stochastic Input Model Reduction",
Journal of Computational Physics, Vol. 230, Issue 19, pp. 7311-7331, 2011 (For
ScienceDirect subscribers, a full
feature html copy). [113]
[112]
J. Wan and N. Zabaras, "A Bayesian Approach to Multiscale Inverse Problems
Using a Sequential Monte Carlo Method", Inverse Problems, Vol. 27, pp. 105004 (25 pp), 2011 -- Selected
by the editors of Inverse Problems for inclusion in the
`Highlights of 2011’ collection. Papers are chosen on the basis of referee
endorsement, novelty and scientific impact
(For
Institute of Physics subscribers, a full
feature html copy). [111]
Xiang Ma and N. Zabaras, "A stochastic mixed finite element
heterogeneous multiscale method for flow in
porous media", Journal of Computational Physics,
Vol. 230, Issue 12, pp. 4696-4722, 2011 (For
ScienceDirect subscribers, a full
feature html copy). [110]
Bin Wen, Zheng Li and N. Zabaras, "Thermal
response variability of random polycrystalline
microstructures", Communications in Computational Physics, Vol. 10, No. 3, pp. 607-634, 2011 (doi: 10.4208/cicp.200510.061210a). 2010Zheng Li, Bin Wen and N. Zabaras, "Computing mechanical response variability of polycrystalline microstructures
through dimensionality reduction techniques", Computational Materials Science, Vol. 49, Issue 3, pp. 568-581, 2010
(For
ScienceDirect subscribers, a full
feature html copy). [109]
[108]
B. Kouchmeshky and N. Zabaras, "Microstructure model
reduction and uncertainty quantification in multiscale deformation
processes", Computational Materias Science,
Vol. 48, Issue 2, pp. 213--227, 2010 (For
ScienceDirect subscribers, a full
feature html copy). [107]
X. Ma and N. Zabaras, "An adaptive high-dimensional stochastic model representation
technique for the solution of stochastic PDEs", Journal of Computational Physics, Vol. 229, no. 10, pp.
3884--3915, 2010 (For
ScienceDirect subscribers, a full
feature html copy). 2009B. Kouchmeshky and N. Zabaras, "The effect of multiple sources of uncertainty
on the convex hull of material properties", Computational Materials Science,
Volume 47, Issue 2, pp. 342--352, 2009 (For
ScienceDirect subscribers, a full
feature html copy). [106]
[105]
X. Ma and N. Zabaras, "An efficient data-driven Bayesian inference approach to inverse problems based on adaptive sparse
grid collocation method", Inverse Problems (Institute of Physics), Vol. 25, 035013 (27pp), 2009 (For
IOP Publishing subscribers, a full
feature html copy). [104]
B. Ganapathysubramanian and N. Zabaras,
"A stochastic multiscale framework for modeling flow through heterogeneous porous media",
Journal of Computational Physics, Vol. 228, pp. 591--618, 2009 (For
ScienceDirect subscribers, a full
feature html copy). [103]
W. Li and N. Zabaras, "A virtual environment for the
interrogation of 3D polycrystals including grain size effects", Computational Materials Science, Vol. 44, pp. 1163--1177, 2009 (For
ScienceDirect subscribers, a full
feature html copy). [102]
V. Sundararaghavan and N. Zabaras,
"A statistical learning approach for the design
of polycrystalline materials",
Statistical Analysis and Data Mining, Vol. 1, Issue 5, pp. 306--321, 2009 (invited paper for the
special issue on `Materials Informatics:
Data-Driven Discovery
in Materials Science', Krishna Rajan and Patricio Mendez, edts.) (For
Interscience Wiley subscribers, a full
feature html copy). [101]
B. Kouchmeshky and N. Zabaras,
"Modeling the response of HCP polycrystals deforming by slip
and twinning using a finite element representation of the orientation space", Computational Materials Science, Vol. 45, Issue 4, pp. 1043--1051, 2009 (For
ScienceDirect subscribers, a full
feature html copy). [100]
X. Ma and N. Zabaras,
"An adaptive hierarchical sparse grid
collocation algorithm for the solution of
stochastic differential equations",
Journal of Computational Physics, Vol. 228, pp. 3084-3113, 2009 (For
ScienceDirect subscribers, a full
feature html copy). 2008 B. Ganapathysubramanian and N. Zabaras,
"Modeling multiscale diffusion processes in random heterogeneous media",
Computer Methods in Applied Mechanics and Engineering, Vol. 197, pp. 3560--3573, 2008 (special issue of CMAME on stochastic multiscale
modeling, N. Zabaras and D. Xiu, edts.) (For
ScienceDirect subscribers, a full
feature html copy). [99]
[98]
B. Ganapathysubramanian and N. Zabaras,
"A seamless approach towards stochastic
modeling: Sparse grid collocation and data
driven input models",
Finite Elements in Analysis and Design (special issue with contributions from the
finalists of the 10th Annual R.J. Melosh competition for the best
student paper on FEM), Vol. 44(5), pp. 298-320, 2008 (For
ScienceDirect subscribers, a full
feature html copy). [97]
N. Zabaras and B. Ganapathysubramanian,
"A scalable framework for the solution of
stochastic inverse problems using a sparse grid
collocation approach",
J. Computational Physics, Vol. 227 pp. 4697-4735, 2008 (For
ScienceDirect subscribers, a full
feature html copy). [96]
V. Sundararaghavan and N. Zabaras, "A
multilength scale continuum
sensitivity analysis for the control of texture-dependent properties in
deformation processing", International Journal of Plasticity,
Vol. 24, pp. 1581-1605, 2008 (For
ScienceDirect subscribers, a full
feature html copy). [95]
B. Ganapathysubramanian and N. Zabaras, "A non-linear dimension reduction methodology
for generating data-driven stochastic input models", Journal of Computational Physics, Vol. 227, pp. 6612-6637, 2008
(For
ScienceDirect subscribers, a full
feature html copy). [94]
X. Ma and N. Zabaras,
"A stabilized stochastic finite element second-order projection method for modeling natural convection in random porous media",
Journal of Computational Physics, Vol. 227, pp. 8448-8471, 2008 (For
ScienceDirect subscribers, a full
feature html copy). [93]
V. Sundararaghavan and N. Zabaras,
"Many-body expansions for computing stable structures of multi-atom systems",
Physical Review B, Vol. 77 (6), pp. 064101-1--064101-10, 2008 (For
APS journals subscribers, a full
feature html copy). 2007L. Tan and N. Zabaras,
"Multiscale modeling of alloy solidification using a database approach",
Journal of Computational Physics,
Vol. 227, pp. 728-754, 2007 (For
ScienceDirect subscribers, a full
feature html copy). [92]
[91]
L. Tan and N. Zabaras,
"Modeling the growth and interaction of multiple dendrites in solidification
using a level set method",
Journal of Computational Physics, Vol. 226, pp. 131-155, 2007 (For
ScienceDirect subscribers, a full
feature html copy). [90]
N. Zabaras and S. Sankaran, "An information-theoretic approach to stochastic materials
modeling", IEEE Computing in Science and Engineering (CiSE), special issue of
"Stochastic Modeling of
Complex Systems" (guest edts. D. M. Tartakovsky and D. Xiu), March/April issue, pp. 50-59, 2007. [89]
B. Ganapathysubramanian and N. Zabaras, "Modelling diffusion in random heterogeneous media: Data-driven models,
stochastic collocation and the variational multi-scale method", Journal of Computational Physics,
Vol. 226, pp. 326-353, 2007 (For
ScienceDirect subscribers, a full
feature html copy). [88] B. Ganapathysubramanian and N. Zabaras,
"Sparse grid collocation methods for stochastic natural convection problems", Journal of Computational Physics,
Vol. 225, pp. 652-685, 2007 (For
ScienceDirect subscribers, a full
feature html copy). Listed on the top five most cited JCP papers since 2007. [87]
S.
Sankaran and N. Zabaras, "Computing property variability of polycrystals induced by
grain size and orientation uncertainties", Acta Materialia, Vol. 55, Issue 7, pp. 2279-2290, 2007 (For
ScienceDirect subscribers, a full
feature html copy). [86] V. Sundararaghavan and N. Zabaras,
"Linear analysis of texture-property
relationships using process-based
representations of Rodrigues space", Acta Materialia, Vol. 55, Issue 5, pp. 1573-1587, 2007 (For
ScienceDirect subscribers, a full
feature html copy). [85]
L.
Tan and N. Zabaras, "A level set simulation of dendritic solidification of multi-component alloys",
Journal of Computational Physics, Vol. 221, Issue 1, pp. 9-40, 2007 (For
ScienceDirect subscribers, a full
feature html copy). The article was listed in the top 25 hottest articles for JCP in the
period January-March 2007. [84]
S.
Acharjee and N. Zabaras, "A non-intrusive stochastic Galerkin approach for modeling
uncertainty propagation in deformation processes", Computers and Structures (special issue on
Stochastic Modeling, G.I.Schueller, edt.), Vol. 85, Issues 5-6, pp. 244-254, 2007 (For
ScienceDirect subscribers, a full
feature html copy). 2006D.
Samanta and N.
Zabaras, "On the control of macrosegregation in the solidification of
alloys using magnetic fields", International Journal of Heat and Mass Transfer, Vol. 49, pp. 4850-4866, 2006 (For
ScienceDirect subscribers, a full
feature html copy). [83] [82]
N. Zabaras,
V. Sundararaghavan and S. Sankaran, "An information-theoretic approach for obtaining property PDFs from
macro specifications of microstructural variability", TMS Letters, Vol. 3, Issue 1, pp. 1-2, 2006. [81] L.L. Graham-Brady, S.R. Arwade, D.J. Corr, M.A. Gutierrez, D. Breysse, M. Grigoriu, N. Zabaras, "Probability and materials, from nano- to macro-scale: A summary",
Probabilistic Engineering Mechanics, Vol. 21, pp. 193-199, 2006 (For
ScienceDirect subscribers, a full
feature html copy). [80] B. Velamur
Asokan and N. Zabaras, "A stochastic variational multiscale method for diffusion in heterogeneous random media",
Journal of Computational
Physics, Vol. 218, pp. 654-676, 2006 (For
ScienceDirect subscribers, a full
feature html copy). [79] V. Sundararaghavan and N. Zabaras,
"Design of microstructure-sensitive properties in elasto-viscoplastic
polycrystals using multi-scale homogenization", International Journal of Plasticity,
Vol. 22, pp. 1799-1824, 2006 (For
ScienceDirect subscribers, a full
feature html copy). [78]
S.
Sankaran and N. Zabaras, "A maximum entropy approach for property prediction of random
microstructures", Acta Materialia, Vol. 54, pp. 2265-2276, 2006 (For
ScienceDirect subscribers, a full
feature html copy). [77]
N.
Zabaras, B. Ganapathysubramanian and L. Tan, "Modeling dendritic solidification
with melt convection using the extended finite element method (XFEM)
and level set methods", Journal of Computational Physics, Vol. 218, pp. 200-227, 2006 (For
ScienceDirect subscribers, a full
feature html copy).Swagato Acharjee and N.
Zabaras, "The continuum sensitivity method for
the computational design of three-dimensional deformation processes",
Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 6822-6842, 2006 (For
ScienceDirect subscribers, a full
feature html copy).[76] S.
Acharjee and N. Zabaras, "A concurrent model reduction approach on
spatial and random domains for stochastic PDEs", International Journal
for Numerical Methods in Engineering, Vol. 66, pp. 1934-1954, 2006 (For Wiley
InterScience subscribers, a full
feature html copy).[75]
J. Wang and
N. Zabaras, "A Markov random field model to contamination source
identification in porous media flow", International Journal of Heat and
Mass Transfer, Vol. 49, pp. 939-950, 2006 (For
ScienceDirect subscribers, a full
feature html copy).[74] Lijian
Tan and N. Zabaras, "A level set simulation of dendritic solidification
with combined features of front tracking and fixed domain methods",
Journal of Computational Physics, Vol. 211, pp. 36-63, 2006 (For ScienceDirect
subscribers, a
full feature html copy).[73]
S.
Acharjee and N. Zabaras, "Uncertainty propagation in finite
deformations -- A spectral stochastic Lagrangian approach", Computer
Methods in Applied Mechanics and Engineering, Vol. 195, pp. 2289-2312, 2006 (For
ScienceDirect subscribers, a
full feature html copy).[72]
D.
Samanta and N. Zabaras, "A coupled thermomechanical, thermal transport
and segregation analysis of the solification of Aluminum alloys on
molds of uneven topographies", Materials Science and Engineering: A,
Vol. 408, pp. 211-226, 2005 (For ScienceDirect
subscribers, a
full feature html copy).2005[71]
Lijian
Tan and N. Zabaras, "A thermomechanical study of the effects of mold
topography on the solidification of Aluminum alloys", Materials Science
and Engineering: A, Vol. 404, pp. 197-207, 2005 (For ScienceDirect subscribers, a
full feature
html copy).[70] D. Samanta and N.
Zabaras, "Macrosegregation in the solidification of
Aluminum Alloys on uneven surfaces", International Journal of Heat and
Mass Transfer, Vol. 48, pp. 4541-4556, 2005 (For ScienceDirect subscribers, a
full feature html copy).[69] D. Samanta and N.
Zabaras, "Modeling melt convection in solidification
processes with stabilized finite element techniques", International
Journal for Numerical Methods in Engineering, Vol. 64, pp. 1769-1799, 2005 (For Wiley
InterScience subscribers, a full
feature html copy).[68]
B. Velamur Asokan and
N. Zabaras, "Using stochastic analysis to capture
unstable equilibrium in natural convection", Journal of Computational
Physics, Vol. 208/1, pp. 134-153, 2005 (For ScienceDirect subscribers, a
full feature html copy).[67]
B.
Ganapathysubramanian and N. Zabaras, "On the control of solidification
of conducting materials using magnetic fields and magnetic field
gradients", International Journal of Heat and Mass Transfer, Vol. 48, pp. 4174-4189, 2005
(For ScienceDirect subscribers, a
full feature html copy).[66]
V.
Sundararaghavan and N. Zabaras, "On the synergy between classification
of textures and deformation process sequence selection", Acta
Materialia, Vol. 53/4, pp. 1015-1027, 2005 (For ScienceDirect
subscribers, a
full feature html copy).[65] B.
Ganapathysubramanian and N. Zabaras, "Control of solidification of
non-conducting materials using tailored magnetic fields", Journal of
Crystal Growth, Vol. 276/1-2, pp. 299-316, 2005 (For ScienceDirect
subscribers, a
full feature html copy).[64]
S.
Ganapathysubramanian and N. Zabaras, "Modeling the
thermoelastic-viscoplastic response of polycrystals using a continuum
representation over the orientation space", International Journal of
Plasticity, Vol. 21/1 pp. 119-144, 2005 (For ScienceDirect subscribers,
a
full feature html copy).[63]
Jingbo
Wang and N. Zabaras, "Hierarchical Bayesian models for inverse problems
in heat conduction", Inverse Problems, Vol. 21, pp. 183-206, 2005 (For
Institute of Physics (IOP) subscribers, a
full feature html copy).[62]
Jingbo
Wang and N. Zabaras, "Using Bayesian statistics in the estimation of
heat source in radiation", International Journal of Heat and Mass
Transfer, Vol. 48, pp. 15-29, 2005 (For ScienceDirect subscribers, a
full feature html copy).[61]
V.
Sundararaghavan and N. Zabaras, "Classification of three-dimensional
microstructures using support vector machines", Computational Materials
Science, Vol. 32, pp. 223-239, 2005 (For ScienceDirect subscribers, a
full feature html copy).[60] B. Velamur
Asokan and N. Zabaras, "Variational multiscale stabilized FEM
formulations for transport equations: stochastic advection-diffusion
and incompressible stochastic Navier-Stokes equations", Journal of
Computational Physics, Vol. 202/1, pp. 94-133, 2005 (For ScienceDirect
subscribers, a
full feature
html copy).[59] S.
Ganapathysubramanian and N. Zabaras, "Design across length scales: A
reduced-order model of polycrystal plasticity for the control of
microstructure-sensitive material properties", Computer Methods in
Applied Mechanics and Engineering, Vol. 193 (45-47), pp. 5017-5034,
2004 (For ScienceDirect subscribers, a
full feature html
copy).2004[58] Jingbo Wang and N.
Zabaras, "A Bayesian inference approach to the stochastic inverse heat
conduction problem", International Journal of Heat and Mass Transfer,
Vol. 47, pp. 3927-3941, 2004 (For ScienceDirect subscribers, a
full feature html copy).[57] B.
Ganapathysubramanian and N. Zabaras, "Using magnetic field gradients to
control the directional solidification of alloys and the growth of
single crystals", Journal of Crystal Growth, Vol. 270/1-2, pp. 255-272,
2004 (For ScienceDirect subscribers, a
full feature html copy).[56] V. Sundararaghavan
and N. Zabaras, "A dynamic material library for the representation of
single phase polyhedral microstructures", Acta Materialia, Vol. 52/14,
pp. 4111-4119, 2004 (For ScienceDirect subscribers, a full
feature html copy).[55] Velamur Asokan
Badri Narayanan and N. Zabaras, "Stochastic inverse heat conduction
using a spectral approach", International Journal for Numerical Methods
in Engineering, Vol. 60/9, pp. 1569-1593, 2004 (For Wiley InterScience
subscribers, a
full feature html copy).[54] N. Zabaras and D.
Samanta, "A stabilized volume-averaging finite element method for flow
in porous media and binary alloy solidification processes",
International Journal for Numerical Methods in Engineering, Vol. 60/6,
pp. 1103-1138, 2004 (For Wiley InterScience subscribers, a
full feature html copy).[53] S.
Ganapathysubramanian and [52] S.
Acharjee and N.
Zabaras "A proper orthogonal decomposition approach to microstructure
model reduction in Rodrigues space with applications to the control of
material properties", Acta Materialia, Vol. 51/18, pp. 5627-5646, 2003
(For ScienceDirect subscribers, a
full feature html copy).2003[51] N. Zabaras, S.
Ganapathysubramanian and Q. Li, "A continuum sensitivity method for the
design of multi-stage metal forming processes", International Journal
of Mechanical Sciences, Vol. 45, pp. 325--358, 2003 (For ScienceDirect
subscribers, a
full feature html copy).[50] S.
Ganapathysubramanian and [49] S.
Ganapathysubramanian and N. Zabaras, "A continuum sensitivity method
for finite thermo-inelastic deformations with applications to the
design of hot forming processes", International Journal for Numerical
Methods in Engineering, Vol. 55, pp. 1391--1437, 2002.2002[48] R.
Sampath and 2001[47] S.
Akkaram and [46] R.
Sampath and [45] R.
Sampath and [44] R. Sampath
and N.
Zabaras, "A functional optimization approach to an inverse
magneto-convection problem", Computer Methods in Applied Mechanics and
Engineering, Vol. 190, No. 15-17, pp. 2063--2097, 2001.[43] A. Srikanth and N.
Zabaras, "Preform design and shape optimization in metal forming",
Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.
1859--1901, 2000.2000[42] N. Zabaras, Y.
Bao, A. Srikanth and W. G. Frazier, "A continuum sensitivity analysis
for metal forming processes with application to die design problems",
International Journal for Numerical Methods in Engineering, Vol. 48,
pp. 679--720, 2000.[41] R. Sampath and [40] A. Srikanth and 1999[39] N. Zabaras and A.
Srikanth, "Using objects to model finite deformation plasticity",
Engineering with Computers, Special Issue on Object Oriented
Computational Mechanics Techniques, Vol. 15, pp. 37--60, 1999.[38] N. Zabaras and A.
Srikanth, "An object-oriented programming approach to the Lagrangian
FEM analysis of large inelastic deformations and metal forming
processes", International Journal for Numerical Methods in Engineering,
Vol. 45, pp. 399--445, 1999.[37] R. Sampath and N.
Zabaras, "An object-oriented implementation of a front tracking FEM for
directional solidification processes", International Journal for
Numerical Methods in Engineering, Vol. 44(9), pp. 1227--1265, 1999.[36] G. Z. Yang and 1998[35] G.
Z. Yang and [34] N.
Zabaras and G.
Yang, "A functional optimization and implementation for an inverse
natural convection problem", Computer Methods in Applied Mechanics and
Engineering, Vol. 144, pp. 245--274, 1997.1997[33] S. Badrinarayanan
and N. Zabaras, "A sensitivity analysis for the optimal design of metal
forming processes", Computer Methods in Applied Mechanics and
Engineering, Vol. 129, pp. 319--348, 1996.1996[32] N. Zabaras and T.
Hung Nguyen, "Control of the freezing interface morphology in
solidification processes in the presence of natural convection",
International Journal for Numerical Methods in Engineering, Vol. 38,
pp. 1555--1578, 1995.1995[31] S. Kang and [30] N. Zabaras and S.
Liu, "A theory for small deformation analysis of growing bodies with an
application to the winding of magnetic tape packs", Acta Mechanica,
Vol. 111, pp. 95--110, 1995.[29] D. McDaniel and N.
Zabaras, "A least squares front tracking FEM analysis of phase change
problems with natural convection", International Journal for Numerical
Methods in Engineering, International Journal for Numerical Methods in
Engineering, Vol. 37, pp. 2755--2777, 1994.1994[28] N. Zabaras and K.
Yuan, "Dynamic programming approach to the inverse Stefan design
problem", Numerical Heat Transfer, Part B, Vol 26, No. 1, 97--104, 1994.[27] N. Zabaras, S. Liu,
J. Kopuzha, and E. Donaldson, "A hypoelastic model for computing
stresses in center- wound rolls of magnetic tape", Journal of Applied
Mechanics ASME, Vol. 61, No. 2, pp. 290--295, 1994.[26] N. Zabaras and [25] A. M. Maniatty and [24] N. Zabaras and S.
Kang, "On the solution of an ill-posed inverse design solidification
problem using minimization techniques in finite and infinite
dimensional spaces", International Journal for Numerical Methods in
Engineering, Vol. 36, pp. 3973--3990, 1993.1993[23] N. Zabaras and S.
Kang, "Thermomechanical final state design of unidirectional
solidification processes", Journal of Materials Processing and
Manufacturing Science, Vol. 2, pp. 141--157, 1993.[22] A. F. M. Arif and 1992[21] D. Schnur and N.
Zabaras, "An inverse method for determining elastic material properties
and a material interface", International Journal for Numerical Methods
in Engineering, Vol. 33, pp. 2039--2057, 1992.[20] N. Zabaras, Y.
Ruan, and O. Richmond, "On the design of two-dimensional Stefan
processes with desired freezing front motions", Numerical Heat
Transfer, Part B, Vol. 21, pp. 307--325, 1992.[19] T. Pervez and [18] N. Zabaras and A.
F. M. Arif, "A family of integration algorithms for constitutive
equations in finite deformation elasto-viscoplasticity", International
Journal for Numerical Methods in Engineering, Vol. 33, pp. 59--84, 1992.[17] N. Zabaras, Y.
Ruan, and O. Richmond, "On the calculation of deformations and thermal
stresses during axially symmetric solidification", Journal of Applied
Mechanics ASME, Vol. 58, pp. 865--871, December 1991.1991[16] S. Tolson and [15] Y. Ruan and [14] N. Zabaras and Y.
Ruan, "Moving and deforming finite element simulation of
two-dimensional Stefan problems", Communications in Applied Numerical
Methods, Vol. 6, pp. 495--506, 1990.1990[13] N. Zabaras, Y.
Ruan, and O. Richmond, "Front tracking thermomechanical model for
hypoelastic-viscoplastic behavior in a solidifying body", Computer
Methods in Applied Mechanics and Engineering, Vol. 81, pp. 333-364,
1990.[12] N. Zabaras and T.
Pervez, "Viscous damping approximation of laminated anisotropic
composite plates using the finite element method", Computer Methods in
Applied Mechanics and Engineering, Vol. 81, pp. 291-- 316, 1990.[11] D. Schnur and N.
Zabaras, "Finite element solution of two-dimensional inverse elastic
problems using spatial smoothing", International Journal for Numerical
Methods in Engineering, Vol. 30, pp. 57--75, 1990.[10] N. Zabaras, "Inverse
finite element techniques for the analysis of solidification
processes", International Journal for Numerical Methods in Engineering,
Vol. 29, pp. 1569--1587, 1990.[9] N. Zabaras, V.
Morellas, and D. Schnur, "Spatially regularized solution of inverse
elasticity problems using the boundary element method", Communications
in Applied Numerical Methods, Vol. 5, pp. 547--553, 1989.1989[8] A. Maniatty and N.
Zabaras, "Method for solving inverse elasto-viscoplastic problems",
Journal of the Engineering Mechanics Division ASCE, Vol. 115, No. 10,
pp. 2216--2231, October 1989.[7] A. Maniatty, N.
Zabaras, and K. Stelson, " Finite element analysis of some inverse
elasticity problems", Journal of the Engineering Mechanics Division
ASCE, Vol. 115, No. 6, pp. 1303--1317, June 1989.[6] N. Zabaras and Y.
Ruan, "A deforming FEM analysis of inverse Stefan problems",
International Journal for Numerical Methods in Engineering, Vol. 28,
pp. 295--313, 1989.[5] N.
Zabaras and J.
Liu, "An analysis of two-dimensional linear inverse heat transfer
problems using an integral method", Numerical Heat Transfer, Vol. 13,
pp. 527--533, 1988.1988[4] N. Zabaras, [3] N. Zabaras and 1987 [2] N. Zabaras, [1] |